Correction to Accuracy of Calculations of Heats of Reduction/ Hydrogenation: Application to Some Small Ring Systems

Kenneth B. Wiberg*

J. Org. Chem. 2012, 77, 10393-10398 DOI: 10.1021/jo302118b

P age 10369. As a result of an error in recording the CBS-QB3 enthalpy of H_2 , the QB3 column of Table 7 in this paper was in error. The revised enthalpies are recorded in the new Table 7 and show that, for hydrogenolysis of C–C bonds, this level of theory is nearly as satisfactory as the other methods that have much higher computational requirements.

Table 7. Calculated Enthalpies of Hydrogenolysis, kcal/mol

reaction	QB3	G4	APNO	W1BD	obs
ethane + $H_2 \rightarrow 2$ methane	-14.7	-15.4	-15.5	-15.3	-15.6 ± 0.2
propane + $H_2 \rightarrow$ ethane + methane	-12.0	-12.7	-12.8	-12.8	-12.8 ± 0.2
butane + $H_2 \rightarrow 2$ ethane	-9.2	-9.7	-10.0	-10.2	-10.0 ± 0.2
2,3-dimethylbutane + $H_2 \rightarrow 2$ propane	-6.9	-7.2	-7.9		-7.4 ± 0.3
hexamethylethane + $H_2 \rightarrow 2$ isobutane	-8.4	-8.5	-9.4		-10.2 ± 0.4
cyclopropane + $H_2 \rightarrow propane$	-37.4	-37.5	-38.4	-38.3	-37.7 ± 0.1
cyclobutane + $H_2 \rightarrow$ butane	-35.9	-36.4	-37.0	-36.9	-36.6 ± 0.3
cyclopentane + $H_2 \rightarrow n$ -pentane	-16.4	-17.0	-15.5		-16.8 ± 0.3
cyclohexane + $H_2 \rightarrow n$ -hexane	-10.0	-10.7	-11.1		-10.4 ± 0.3
bicyclo[1.1.0]butane + $H_2 \rightarrow$ cyclobutane	-46.0	-46.2	-44.1	-47.6	-45.3 ± 0.4
bicyclo[2.1.0]pentane + $H_2 \rightarrow$ cyclopentane	-54.3	-54.3	-57.5		na
bicyclo[2.2.0]hexane + $H_2 \rightarrow$ cyclohexane	-59.4	-59.6	-60.6		na
$[1.1.1]$ propellane + H ₂ \rightarrow bc $[1.1.1]$ pentane	-38.0	-37.6	-37.9	-39.1	na
$[2.2.2]$ propellane + H ₂ \rightarrow bc $[2.2.2]$ octane	-88.3	-88.0	-91.1		na
biphenyl + $H_2 \rightarrow 2$ benzene	-0.9	-1.4			-4.0 ± 0.6
bibenzyl + $H_2 \rightarrow 2$ toluene	-7.9	-8.2			-10.0 ± 0.4
rms error	1.5	1.1	0.7	1.0	

S Publications © 2013 American Chemical Society

11628